Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Am J Clin Pathol ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430556

RESUMEN

OBJECTIVES: We sought to confirm utility of our institution's modified Proactive Molecular Risk Classifier for Endometrial Cancer protocol in our daily practice, which includes mismatch repair (MMR), p53, and L1 cell adhesion molecule (L1CAM) immunohistochemistry with in-house next-generation sequencing for POLE, TP53, and CTNNB1. METHODS: We conducted a retrospective review of all patients in our institution who underwent primary endometrial carcinoma resection from the year prior to protocol implementation (PRE; October 1, 2020, to September 30, 2021) through first year of implementation (POST; October 1, 2021, to September 30, 2022) to compare the distribution of molecular and traditional staging factors using GOG-249 criteria to assign clinical risk. RESULTS: In total, 136 of 260 PRE patients were classified as clinically low risk (LR), of whom 31 were MMR deficient. Of the 157 LR POST patients with endometrioid-type carcinoma, 45 were MMR deficient, 5 were POLE mutant, 5 were TP53 mutant, 56 were of no specific molecular profile (NSMP), and 46 did not receive full protocol testing. Of all 79 POST NSMP endometrioid-type cases, 18 were CTNNB1 mutated and 8 showed L1CAM expression. CONCLUSIONS: Our protocol identified 22 (14%) of 157 LR tumors that harbored incipient intermediate- to high-risk molecular aberrations in TP53, CTNNB1, or L1CAM. Moving forward, results of ongoing trials assessing adjuvant therapy decisions based on molecular classification are necessary to confirm protocol utility and identify appropriate modifications.

2.
JAMA Netw Open ; 7(2): e240407, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38411963

RESUMEN

IMPORTANCE: Platinum-based chemotherapy is the backbone of standard-of-care treatment for patients with advanced-stage, high-grade serous carcinoma (HGSC), the most common form of ovarian cancer; however, one-third of patients have or acquire chemoresistance toward platinum-based therapies. OBJECTIVE: To demonstrate the utility of tumor-stroma proportion (TSP) as a predictive biomarker of chemoresistance of HGSC, progression-free survival (PFS), and overall survival (OS). DESIGN, SETTING, AND PARTICIPANTS: This prognostic study leveraged tumors from patients with HGSC in The Cancer Genome Atlas (TCGA) cohort (1993-2013) and an independent cohort of resected clinical specimens from patients with HGSC (2004-2014) available in diagnostic and tissue microarray formats from the University of Tübingen in Germany. Data analysis was conducted from January 2021 to January 2024. EXPOSURE: Diagnosis of HGSC. MAIN OUTCOMES AND MEASURES: Principal outcome measures were the ability of TSP to predict platinum chemoresistance, PFS, and OS. Using hematoxylin and eosin-stained slides from the Tübingen cohort (used for routine diagnostic assessment from surgical specimens) as well as tissue microarrays, representative sections of tumors for scoring of TSP were identified using previously evaluated cutoffs of 50% stroma or greater (high TSP) and less than 50% stroma (low TSP). Digitized slides from the TCGA Cohort were analyzed and scored in a similar fashion. Kaplan-Meier time-to-event functions were fit to estimate PFS and OS. RESULTS: The study included 103 patients (mean [SD] age, 61.6 [11.1] years) from the TCGA cohort and 192 patients (mean [SD] age at diagnosis, 63.7 [11.1] years) from the Tübingen cohort. In the TCGA cohort, there was no significant association of TSP levels with chemoresistance, PFS, or OS. However, in the Tübingen cohort, high TSP was associated with significantly shorter PFS (HR, 1.586; 95% CI, 1.093-2.302; P = .02) and OS (hazard ratio [HR], 1.867; 1.249-2.789; P = .002). Patients with chemoresistant tumors were twice as likely to have high TSP as compared to patients with chemosensitive tumors (HR, 2.861; 95% CI, 1.256-6.515; P = .01). In tissue microarrays from 185 patients from the Tübingen cohort, high TSP was again associated with significantly shorter PFS (HR, 1.675; 95% CI, 1.012-2.772 P = .04) and OS (HR, 2.491; 95% CI, 1.585-3.912; P < .001). CONCLUSIONS AND RELEVANCE: In this prognostic study, TSP was a consistent and reproducible marker of clinical outcome measures of HGSC, including PFS, OS, and platinum chemoresistance. Accurate and cost-effective predictive biomarkers of platinum chemotherapy resistance are needed to identify patients most likely to benefit from standard treatments, and TSP can easily be implemented and integrated into prospective clinical trial design and adapted to identify patients who are least likely to benefit long-term from conventional platinum-based cytotoxic chemotherapy treatment at the time of initial diagnosis.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias Ováricas , Humanos , Femenino , Persona de Mediana Edad , Niño , Resistencia a Antineoplásicos/genética , Estudios Prospectivos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Análisis de Datos , Eosina Amarillenta-(YS) , Platino (Metal)
3.
Pathology ; 56(3): 404-412, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38341302

RESUMEN

TP53 mutational status in myeloid neoplasms is prognostic and in acute myeloid leukaemia (AML) may lead to alternative induction therapy; therefore, rapid assessment is necessary for precision treatment. Assessment of multiple prognostic genes by next generation sequencing in AML is standard of care, but the turn-around time often cannot support rapid clinical decision making. Studies in haematological neoplasms suggest p53 immunohistochemistry (IHC) correlates with TP53 mutational status, but they have used variable criteria to define TP53 overexpression. p53 IHC was performed and interpreted on AZF-fixed, acid decalcified bone marrow biopsies on 47 cases of clonal myeloid neoplasms with TP53 mutations between 2016 and 2019 and 16 control samples. Results were scored by manual and digital analysis. Most TP53-mutated cases (81%) overexpressed p53 by digital analysis and manual analysis gave similar results. Among the nine TP53-mutated IHC-negative cases, seven (78%) were truncating mutations and two (22%) were single-hit missense mutations. Using a digital cut-off of at least 3% ≥1+ positive nuclei, the sensitivity and specificity are 81% and 100%; cases with loss-of-function mutations were more likely to be negative. In this cohort, p53 immunopositivity correlated with TP53 mutational status, especially missense mutations, with excellent specificity. Truncating TP53 mutations explain most IHC-negative cases, impacting the sensitivity. We demonstrate that p53 IHC can screen for TP53 mutations allowing quicker treatment decisions for most patients. However, not all patients will be identified, so molecular studies are required. Furthermore, cut-offs for positivity vary in the literature, consequently laboratories should independently validate their processes before adopting p53 IHC for clinical use. p53 IHC performs well to screen for TP53 mutations in AZF-fixed bone marrow. Performance in our setting differs from the literature, which shows variability of pre-analytic factors and cut-offs used to screen for TP53 mutations. Each laboratory should validate p53 IHC to screen for TP53 mutations in their unique setting.


Asunto(s)
Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Humanos , Proteína p53 Supresora de Tumor/genética , Médula Ósea/patología , Inmunohistoquímica , Mutación , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Biopsia
5.
Biotech Histochem ; 98(7): 508-522, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37615074

RESUMEN

Cocaine and amphetamine regulated transcript (CART) is a somatostatin-like polypeptide. CART has been localized in the CNS, hypothalamo-pituitary-adrenocortical (HPA) axis, pancreatic islets and enteric nervous system. We investigated the cellular localization of CART in normal human prostate, benign prostatic hyperplasia, prostatic intraepithelial neoplasia and acinar adenocarcinoma. CART was assessed using immunohistochemistry (IHC) and in situ hybridization (ISH), and its gene expression was identified by RTqPCR. We found cellular expression of CART in both normal prostatic luminal secretory epithelial cells neuroendocrine cells (NEC) of both ducts and acini. The cellular appearance indicated a cycle of neuropeptide synthesis and secretion as validated by ISH/IHC concordance. RTqPCR analysis also validated the immunohistochemical data and gene expression, which both indicated low to moderate expression in prostatic tissues. CART expression also was increased in both neuroendocrine and glandular epithelial cell populations from samples of benign prostatic hyperplasia as validated by IHC, ISH and RTqPCR. CART expression was markedly diminished and, in some cases, entirely absent in tissues of prostatic intraepithelial neoplasia and adenocarcinoma. Owing to loss of CART expression in adenocarcinoma and its increase in benign prostatic hyperplasia, CART may prove to be an important prostate marker.


Asunto(s)
Adenocarcinoma , Hiperplasia Prostática , Neoplasia Intraepitelial Prostática , Neoplasias de la Próstata , Masculino , Humanos , Próstata/metabolismo , Próstata/patología , Hiperplasia Prostática/genética , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patología , Neoplasia Intraepitelial Prostática/metabolismo , Neoplasia Intraepitelial Prostática/patología , Neoplasias de la Próstata/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patología
6.
Cell ; 186(16): 3476-3498.e35, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541199

RESUMEN

To improve the understanding of chemo-refractory high-grade serous ovarian cancers (HGSOCs), we characterized the proteogenomic landscape of 242 (refractory and sensitive) HGSOCs, representing one discovery and two validation cohorts across two biospecimen types (formalin-fixed paraffin-embedded and frozen). We identified a 64-protein signature that predicts with high specificity a subset of HGSOCs refractory to initial platinum-based therapy and is validated in two independent patient cohorts. We detected significant association between lack of Ch17 loss of heterozygosity (LOH) and chemo-refractoriness. Based on pathway protein expression, we identified 5 clusters of HGSOC, which validated across two independent patient cohorts and patient-derived xenograft (PDX) models. These clusters may represent different mechanisms of refractoriness and implicate putative therapeutic vulnerabilities.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Proteogenómica , Femenino , Humanos , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética
7.
Nat Aging ; 3(7): 776-790, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37400722

RESUMEN

Cellular senescence is a well-established driver of aging and age-related diseases. There are many challenges to mapping senescent cells in tissues such as the absence of specific markers and their relatively low abundance and vast heterogeneity. Single-cell technologies have allowed unprecedented characterization of senescence; however, many methodologies fail to provide spatial insights. The spatial component is essential, as senescent cells communicate with neighboring cells, impacting their function and the composition of extracellular space. The Cellular Senescence Network (SenNet), a National Institutes of Health (NIH) Common Fund initiative, aims to map senescent cells across the lifespan of humans and mice. Here, we provide a comprehensive review of the existing and emerging methodologies for spatial imaging and their application toward mapping senescent cells. Moreover, we discuss the limitations and challenges inherent to each technology. We argue that the development of spatially resolved methods is essential toward the goal of attaining an atlas of senescent cells.


Asunto(s)
Envejecimiento , Senescencia Celular , Estados Unidos , Humanos , Animales , Ratones , Longevidad
8.
Breast Cancer Res ; 25(1): 74, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349798

RESUMEN

BACKGROUND: RHAMM is a multifunctional protein that is upregulated in breast tumors, and the presence of strongly RHAMM+ve cancer cell subsets associates with elevated risk of peripheral metastasis. Experimentally, RHAMM impacts cell cycle progression and cell migration. However, the RHAMM functions that contribute to breast cancer metastasis are poorly understood. METHODS: We interrogated the metastatic functions of RHAMM using a loss-of-function approach by crossing the MMTV-PyMT mouse model of breast cancer susceptibility with Rhamm-/- mice. In vitro analyses of known RHAMM functions were performed using primary tumor cell cultures and MMTV-PyMT cell lines. Somatic mutations were identified using a mouse genotyping array. RNA-seq was performed to identify transcriptome changes resulting from Rhamm-loss, and SiRNA and CRISPR/Cas9 gene editing was used to establish cause and effect of survival mechanisms in vitro. RESULTS: Rhamm-loss does not alter initiation or growth of MMTV-PyMT-induced primary tumors but unexpectedly increases lung metastasis. Increased metastatic propensity with Rhamm-loss is not associated with obvious alterations in proliferation, epithelial plasticity, migration, invasion or genomic stability. SNV analyses identify positive selection of Rhamm-/- primary tumor clones that are enriched in lung metastases. Rhamm-/- tumor clones are characterized by an increased ability to survive with ROS-mediated DNA damage, which associates with blunted expression of interferon pathway and target genes, particularly those implicated in DNA damage-resistance. Mechanistic analyses show that ablating RHAMM expression in breast tumor cells by siRNA knockdown or CRISPR-Cas9 gene editing blunts interferon signaling activation by STING agonists and reduces STING agonist-induced apoptosis. The metastasis-specific effect of RHAMM expression-loss is linked to microenvironmental factors unique to tumor-bearing lung tissue, notably high ROS and TGFB levels. These factors promote STING-induced apoptosis of RHAMM+ve tumor cells to a significantly greater extent than RHAMM-ve comparators. As predicted by these results, colony size of Wildtype lung metastases is inversely related to RHAMM expression. CONCLUSION: RHAMM expression-loss blunts STING-IFN signaling, which offers growth advantages under specific microenvironmental conditions of lung tissue. These results provide mechanistic insight into factors controlling clonal survival/expansion of metastatic colonies and has translational potential for RHAMM expression as a marker of sensitivity to interferon therapy.


Asunto(s)
Neoplasias Pulmonares , Neoplasias Mamarias Animales , Animales , Especies Reactivas de Oxígeno , Neoplasias Mamarias Animales/genética , Neoplasias Pulmonares/patología , ARN Interferente Pequeño , Daño del ADN
9.
Cancers (Basel) ; 15(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37190186

RESUMEN

Chronic inflammation of the colon (colitis) is a known risk factor for inflammatory-driven colorectal cancers (id-CRCs), and intestinal microbiota has been implicated in the etiology of id-CRCs. Manipulation of the microbiome is a clinically viable therapeutic approach to limiting id-CRCs. To understand the microbiome changes that occur over time in id-CRCs, we used a mouse model of id-CRCs with the treatment of azoxymethane (AOM) and dextran sodium sulfate (DSS) and measured the microbiome over time. We included cohorts where the microbiome was restored using cage bedding swapping and where the microbiome was depleted using antibiotics to compare to untreated animals. We identified consistent increases in Akkermansia in mice receiving horizontal microbiome transfer (HMT) via cage bedding swapping, while the control cohort had consistent longitudinal increases in Anaeroplasma and Alistipes. Additionally, fecal lipocalin-2 (Lcn-2), a marker of intestinal inflammation, was elevated in unrestored animals compared to restored and antibiotic-treated counterparts following HMT. These observations suggest a potential role for Akkermansia, Anaeroplasma, and Alistipes in regulating colonic inflammation in id-CRCs.

10.
J Pathol ; 260(3): 289-303, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37186300

RESUMEN

Breast cancer invasion and metastasis result from a complex interplay between tumor cells and the tumor microenvironment (TME). Key oncogenic changes in the TME include aberrant synthesis, processing, and signaling of hyaluronan (HA). Hyaluronan-mediated motility receptor (RHAMM, CD168; HMMR) is an HA receptor enabling tumor cells to sense and respond to this aberrant TME during breast cancer progression. Previous studies have associated RHAMM expression with breast tumor progression; however, cause and effect mechanisms are incompletely established. Focused gene expression analysis of an internal breast cancer patient cohort confirmed that increased RHAMM expression correlates with aggressive clinicopathological features. To probe mechanisms, we developed a novel 27-gene RHAMM-related signature (RRS) by intersecting differentially expressed genes in lymph node (LN)-positive patient cases with the transcriptome of a RHAMM-dependent model of cell transformation, which we validated in an independent cohort. We demonstrate that the RRS predicts for poor survival and is enriched for cell cycle and TME-interaction pathways. Further analyses using CRISPR/Cas9-generated RHAMM-/- breast cancer cells provided direct evidence that RHAMM promotes invasion in vitro and in vivo. Immunohistochemistry studies highlighted heterogeneous RHAMM protein expression, and spatial transcriptomics associated the RRS with RHAMM-high microanatomic foci. We conclude that RHAMM upregulation leads to the formation of 'invasive niches', which are enriched in RRS-related pathways that drive invasion and could be targeted to limit invasive progression and improve patient outcomes. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Ácido Hialurónico/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Receptores de Hialuranos/metabolismo , Microambiente Tumoral
12.
J Mammary Gland Biol Neoplasia ; 28(1): 1, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36723776

RESUMEN

The extracellular matrix (ECM) is biochemically and biomechanically important for the structure and function of the mammary gland, which undergoes vast structural changes throughout pubertal and reproductive development. Although hyaluronan (HA) is a ubiquitous glycosaminoglycan (GAG) of the mammary gland ECM, extensive characterization of HA deposition in the mammary gland is lacking. Understanding physiologic HA metabolism is critical as this tightly controlled system is often hijacked in cancer. In the current studies, we characterize HA regulation throughout mammary gland development to better understand subsequent dysregulation of HA in mammary tumors. Using immunofluorescence (IF) imaging, we demonstrate that organized HA-rich septa exist in the mammary gland stroma throughout puberty, pregnancy, and involution. Furthermore, we find heterogeneous HA deposition within two murine models of breast cancer. Using cell specific isolation techniques, we characterize expression of genes associated with HA binding, synthesis, and degradation within EpCAM + epithelial cells, CD90.2 + fibroblasts, and F4/80 + macrophages isolated from mammary glands and tumors. Most notably, we identify elevated levels of the hyaluronidases Hyal1 and Hyal2 in tumor-association macrophages (TAMs), suggesting a role for TAM-mediated turnover of HA in the tumor microenvironment (TME). Gene expression is supported functionally by in vitro experiments in which macrophages treated with tumor-cell conditioned media exhibit increased hyaluronidase activity. These findings link TAMs to the direct degradation of HA within the TME of mammary tumors, which has negative implications for patient survival.


Asunto(s)
Glándulas Mamarias Humanas , Neoplasias Mamarias Animales , Embarazo , Femenino , Ratones , Humanos , Animales , Ácido Hialurónico/química , Ácido Hialurónico/metabolismo , Glándulas Mamarias Humanas/metabolismo , Matriz Extracelular/metabolismo , Macrófagos/metabolismo , Neoplasias Mamarias Animales/metabolismo , Microambiente Tumoral
13.
Front Cell Dev Biol ; 10: 982477, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36133924

RESUMEN

The T-box family transcription factor Eomesodermin (Eomes) is present in all vertebrates, with many key roles in the developing mammalian embryo and immune system. Homozygous Eomes mutant mouse embryos exhibit early lethality due to defects in both the embryonic mesendoderm and the extraembryonic trophoblast cell lineage. In contrast, zebrafish lacking the predominant Eomes homologue A (Eomesa) do not suffer complete lethality and can be maintained. This suggests fundamental differences in either the molecular function of Eomes orthologues or the molecular configuration of processes in which they participate. To explore these hypotheses we initially analysed the expression of distinct Eomes isoforms in various mouse cell types. Next we compared the functional capabilities of these murine isoforms to zebrafish Eomesa. These experiments provided no evidence for functional divergence. Next we examined the functions of zebrafish Eomesa and other T-box family members expressed in early development, as well as its paralogue Eomesb. Though Eomes is a member of the Tbr1 subfamily we found evidence for functional redundancy with the Tbx6 subfamily member Tbx16, known to be absent from eutherians. However, Tbx16 does not appear to synergise with Eomesa cofactors Mixl1 and Gata5. Finally, we analysed the ability of Eomesa and other T-box factors to induce zebrafish left-right organiser progenitors (known as dorsal forerunner cells) known to be positively regulated by vgll4l, a gene we had previously shown to be repressed by Eomesa. Here we demonstrate that Eomesa indirectly upregulates vgll4l expression via interlocking feedforward loops, suggesting a role in establishment of left-right asymmetry. Conversely, other T-box factors could not similarly induce left-right organiser progenitors. Overall these findings demonstrate conservation of Eomes molecular function and participation in similar processes, but differential requirements across evolution due to additional co-expressed T-box factors in teleosts, albeit with markedly different molecular capabilities. Our analyses also provide insights into the role of Eomesa in left-right organiser formation in zebrafish.

14.
Am J Med Genet A ; 188(9): 2808-2814, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35451551

RESUMEN

RAP1B is a RAS-superfamily small GTP-binding protein involved in numerous cell processes. Pathogenic gain-of-function variants in this gene have been associated with RAP1B-related syndromic thrombocytopenia, an ultrarare disorder characterized by hematologic abnormalities, neurodevelopmental delays, growth delay, and congenital birth defects including cardiovascular, genitourinary, neurologic, and skeletal systems. We report a 23-year-old male with a novel, de novo RAP1B gain-of-function variant identified on genome sequencing. This is the third reported case which expands the molecular and phenotypic spectrum of RAP1B-related syndromic thrombocytopenia.


Asunto(s)
Trombocitopenia , Adulto , Humanos , Masculino , Trombocitopenia/genética , Adulto Joven , Proteínas de Unión al GTP rap/genética , Proteínas de Unión al GTP rap/metabolismo
15.
Pigment Cell Melanoma Res ; 35(2): 229-237, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34633770

RESUMEN

Tumor heterogeneity is a relevant hallmark of melanoma due to the high mutation burden and immunogenicity commonly encountered. Heterogeneity at the histologic level frequently corresponds to heterogeneity at the molecular level. A better understanding of this feature of malignancy can help refine the development of predictive biomarkers and to define more effective targeted therapies. Here, we describe a case of melanoma displaying a dual phenotype: a DPN-like/plexiform portion in conjunction with a conventional epithelioid morphology. Molecular studies revealed shared BRAF and PTEN mutations in both components but a CTNNB1 mutation was exclusively found in the DPN-like area of the tumor, consistent with the distinct morphology observed. There was considerable heterogeneity in sequence variants identified in the two regions. Gene expression analysis highlighted differentially regulated genes between the two histologies, including a relevant cluster of genes in the receptor tyrosine kinase (RTK) family and related signaling pathways upregulated in the DPN-like/plexiform area.


Asunto(s)
Melanoma , Nevo , Neoplasias Cutáneas , Humanos , Melanoma/patología , Mutación/genética , Nevo/patología , Proteínas Tirosina Quinasas Receptoras/genética , Neoplasias Cutáneas/patología
16.
Transl Oncol ; 16: 101318, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34942534

RESUMEN

Epithelial ovarian cancer (EOC) is a highly heterogeneous disease encompassing several distinct molecular subtypes and clinical entities. Despite the initial success of surgical debulking and adjuvant chemotherapy, recurrence with chemotherapy resistant tumors is common in patients with EOC and leads to poor overall survival. The extensive genetic and phenotypic heterogeneity associated with ovarian cancers has hindered the identification of effective prognostic and predictive biomarkers in EOC patients. In the current studies, we identify a tumor cell surface oncoantigen, chondroitin sulfate proteoglycan 4 (CSPG4), as an independent risk factor for decreased survival of patients with EOC. Our results show that CSPG4 promotes EOC cell invasion, cisplatin resistance and spheroid formation in vitro and tumor expansion in vivo. Mechanistically, spheroid formation and tumor cell invasion are due to CSPG4-stimulated expression of the mesenchymal transcription factor ZEB1. Furthermore, we have developed a novel monoclonal anti-CSGP4 antibody against the juxtamembrane domain of the core protein that limits CSPG4-stimulated ZEB1 expression, tumor cell invasion and promotes EOC apoptosis within spheroid cultures. We therefore propose that CSPG4 expression drives phenotypic heterogeneity and malignant progression in EOC tumors. These studies further demonstrate that CSPG4 expression levels are a potential diagnostic biomarker in EOC and indicate that targeting cells which express this oncoantigen could limit recurrence and improve outcomes in patients with EOC.

17.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34638654

RESUMEN

The functional complexity of higher organisms is not easily accounted for by the size of their genomes. Rather, complexity appears to be generated by transcriptional, translational, and post-translational mechanisms and tissue organization that produces a context-dependent response of cells to specific stimuli. One property of gene products that likely increases the ability of cells to respond to stimuli with complexity is the multifunctionality of expressed proteins. Receptor for hyaluronan-mediated motility (RHAMM) is an example of a multifunctional protein that controls differential responses of cells in response-to-injury contexts. Here, we trace its evolution into a sensor-transducer of tissue injury signals in higher organisms through the detection of hyaluronan (HA) that accumulates in injured microenvironments. Our goal is to highlight the domain and isoform structures that generate RHAMM's function complexity and model approaches for targeting its key functions to control cancer progression.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Receptores de Hialuranos/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Animales , Progresión de la Enfermedad , Humanos , Microambiente Tumoral/fisiología
18.
EClinicalMedicine ; 37: 100957, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34195577

RESUMEN

BACKGROUND: The SARS-CoV-2 virus enters cells via Angiotensin-converting enzyme 2 (ACE2), disrupting the renin-angiotensin-aldosterone axis, potentially contributing to lung injury. Treatment with angiotensin receptor blockers (ARBs), such as losartan, may mitigate these effects, though induction of ACE2 could increase viral entry, replication, and worsen disease. METHODS: This study represents a placebo-controlled blinded randomized clinical trial (RCT) to test the efficacy of losartan on outpatients with COVID-19 across three hospital systems with numerous community sites in Minnesota, U.S. Participants included symptomatic outpatients with COVID-19 not already taking ACE-inhibitors or ARBs, enrolled within 7 days of symptom onset. Patients were randomized to 1:1 losartan (25 mg orally twice daily unless estimated glomerular filtration rate, eGFR, was reduced, when dosing was reduced to once daily) versus placebo for 10 days, and all patients and outcome assesors were blinded. The primary outcome was all-cause hospitalization within 15 days. Secondary outcomes included functional status, dyspnea, temperature, and viral load. (clinicatrials.gov, NCT04311177, closed to new participants). FINDINGS: From April to November 2020, 117 participants were randomized 58 to losartan and 59 to placebo, and all were analyzed under intent to treat principles. The primary outcome did not differ significantly between the two arms based on Barnard's test [losartan arm: 3 events (5.2% 95% CI 1.1, 14.4%) versus placebo arm: 1 event (1.7%; 95% CI 0.0, 9.1%)]; proportion difference -3.5% (95% CI -13.2, 4.8%); p = 0.32]. Viral loads were not statistically different between treatment groups at any time point. Adverse events per 10 patient days did not differ signifcantly [0.33 (95% CI 0.22-0.49) for losartan vs. 0.37 (95% CI 0.25-0.55) for placebo]. Due to a lower than expected hospitalization rate and low likelihood of a clinically important treatment effect, the trial was terminated early. INTERPRETATION: In this multicenter blinded RCT for outpatients with mild symptomatic COVID-19 disease, losartan did not reduce hospitalizations, though assessment was limited by low event rate. Importantly, viral load was not statistically affected by treatment. This study does not support initiation of losartan for low-risk outpatients.

19.
Microbiol Spectr ; 9(1): e0008621, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34259552

RESUMEN

Although nasopharyngeal samples have been considered the gold standard for COVID-19 testing, variability in viral load across different anatomical sites could cause nasopharyngeal samples to be less sensitive than saliva or nasal samples in certain cases. Self-collected samples have logistical advantages over nasopharyngeal samples, making them amenable to population-scale screening. To evaluate sampling alternatives for population screening, we collected nasopharyngeal, saliva, and nasal samples from two cohorts with varied levels and types of symptoms. In a mixed cohort of 60 symptomatic and asymptomatic participants, we found that saliva had 88% concordance with nasopharyngeal samples when tested in the same testing lab (n = 41) and 68% concordance when tested in different testing labs (n = 19). In a second cohort of 20 participants hospitalized for COVID-19, saliva had 74% concordance with nasopharyngeal samples tested in the same testing lab but detected virus in two participants that tested negative with nasopharyngeal samples on the same day. Medical record review showed that the saliva-based testing sensitivity was related to the timing of symptom onset and disease stage. We find that no sample site will be perfectly sensitive for COVID-19 testing in all situations, and the significance of negative results will always need to be determined in the context of clinical signs and symptoms. Saliva retained high clinical sensitivity for early-stage and presymptomatic COVID-19 while allowing easier collection, minimizing the exposure of health care workers, and need for personal protective equipment and making it a viable option for population-scale testing. IMPORTANCE Methods for COVID-19 detection are necessary for public health efforts to monitor the spread of disease. Nasopharyngeal samples have been considered the best approach for COVID-19 testing. However, alternative samples like self-collected saliva offer advantages for population-scale screening. Meta-analyses of recent studies suggest that saliva is useful for detecting SARS-CoV-2; however, differences in disease prevalence, sample collection, and analysis methods still confound strong conclusions on the utility of saliva compared to nasopharyngeal samples. Here, we find that the sensitivity of saliva testing is related to both the timing of the sample collection relative to symptom onset and the disease stage. Importantly, several clinical vignettes in our cohorts highlight the challenges of medical decision making with limited knowledge of the associations between laboratory test data and the natural biology of infection.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/aislamiento & purificación , Saliva/virología , Adulto , Anciano , Anciano de 80 o más Años , Enfermedades Asintomáticas , COVID-19/virología , Estudios de Cohortes , Pruebas Diagnósticas de Rutina/instrumentación , Pruebas Diagnósticas de Rutina/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nasofaringe/virología , SARS-CoV-2/genética , Adulto Joven
20.
Cells ; 10(6)2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34063999

RESUMEN

The molecular heterogeneity of KRAS is well established, with a pool of variants comprising >75% of all known mutations; this pool includes mutations in classic codons 12, 13, and 61, as well as 146 and 117. In addition, there are rare variants that are more frequently encountered clinically due to the advances in next-generation sequencing and more widespread implementation of All-RAS sequencing over the past five years. We have previously identified a missense variant of KRAS, A59T, in a patient with CRC that was associated with a response to an epidermal growth factor inhibitor when added to chemotherapy, supporting the hypothesis that distinct biochemical impacts of different KRAS mutations may produce varied responses to targeted therapy. In this study, we explored a large genomic database comprising 17,909 cases of CRC to determine the prevalence of the A59T mutation and characterized the concurrent genomic alterations associated with this variant in more detail, particularly in relation to the expanding set of potential predictive immuno-oncologic biomarkers. We identified 14 cases of A59 mutations in this dataset (0.08% prevalence). We evaluated the prevalence of high tumor mutation burden (TMB), positive PD-L1 expression, and microsatellite instability-high/mismatch repair-deficiency (MSI-H/dMMR) using both next generation sequencing (NGS) and immunohistochemistry (IHC). The genomic features of pertinent signaling pathways were also described, including RAS pathway, chromatin remodeling, DDR, hedgehog signaling, PI3K, receptor tyrosine kinases, signal transduction, TGF-beta, TP53, and WNT. We uncovered a high level of association of predictive markers of responsiveness to checkpoint inhibition and potentially other forms of immunotherapy, with nearly half of all cases harboring microsatellite instability as assessed using NGS. A59T was also detected in 11 additional cancer types, most prominently in cases of gynecologic or other gastrointestinal sites of origin. This study provides supportive evidence that A59T, and possibly other similarly rare KRAS variants, co-occur with predictive biomarkers of response to immunotherapy.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...